Sequential Search with Refinement: Model and Application with Click-Stream Data

نویسندگان

  • Yuxin Chen
  • Song Yao
چکیده

Sequential Search with Refinement: Model and Application with Click-stream Data We propose a structural model of consumer sequential search under uncertainty about attribute levels of products. Our identification of the search model relies on exclusion restriction variables that separate consumer utility and search cost. Because such exclusion restrictions are often available in online click-stream data, the identification and corresponding estimation strategy is generalizable for many online shopping websites where such data can be easily collected. Furthermore, one important feature of online search technology is that it gives consumers the ability to refine search results using tools such as sorting and filtering based on product attributes. The proposed model can integrate consumers’ decisions of search and refinement. The model is instantiated using consumer click-stream data of online hotel bookings provided by a travel website. The results show that refinement tools have significant effects on consumer behavior and market structure. We find that the refinement tools encourage 34% more searches and enhance the utility of purchased products by 18%. However, most websites by default rank search results according to their qualities or relevance to consumers (e.g., Google). When consumers are unaware of such default ranking rules, they may engage in disproportionately more searches using refinement tools. Consequently, overall consumer surplus may deteriorate when search cost outweighs the enhanced utility. In contrast, if the website simply informs consumers that the default ranking already reflects product quality or relevance, consumers search less and their surplus improves. We also find that refinement tools lead to a less concentrated market structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Top-K Click Stream Sequences Patterns

Sequential pattern mining, it is not just important in data mining field, but it is the basis of many applications. However, running applications cost time and memory, especially when dealing with dense of the dataset. Setting the proper minimum support threshold is one of the factors that consume more memory and time. However, it is difficult for users to get the appropriate patterns; it may p...

متن کامل

An Ensemble Click Model for Web Document Ranking

Annually, web search engine providers spend more and more money on documents ranking in search engines result pages (SERP). Click models provide advantageous information for ranking documents in SERPs through modeling interactions among users and search engines. Here, three modules are employed to create a hybrid click model; the first module is a PGM-based click model, the second module in a d...

متن کامل

Incorporating Non-sequential interactions into Click Models

Click-through information is considered as a valuable source of users’ implicit relevance feedback. As user behavior is usually influenced by a number of factors such as position, presentation style and site reputation, researchers have proposed a variety of assumptions (i.e. click models) to generate a reasonable estimation of result relevance. The construction of click models usually follow s...

متن کامل

Application of Markov-Chain Analysis and Stirred Tanks in Series Model in Mathematical Modeling of Impinging Streams Dryers

In spite of the fact that the principles of impinging stream reactors have been developed for more than half a century, the performance analysis of such devices, from the viewpoint of the mathematical modeling, has not been investigated extensively. In this study two mathematical models were proposed to describe particulate matter drying in tangential impinging stream dryers. The models were de...

متن کامل

Exploring Query Auto-Completion and Click Logs for Contextual-Aware Web Search and Query Suggestion

Contextual data plays an important role in modeling search engine users’ behaviors on both query auto-completion (QAC) log and normal query (click) log. User’s recent search history on each log has been widely studied individually as the context to benefit the modeling of users’ behaviors on that log. However, there is no existing work that explores or incorporates both logs together for contex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Management Science

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2017